IL4I1 augments CNS remyelination and axonal protection by modulating T cell driven inflammation

نویسندگان

  • Konstantina Psachoulia
  • Kelly A. Chamberlain
  • Dongeun Heo
  • Stephanie E. Davis
  • Jeremiah D. Paskus
  • Sonia E. Nanescu
  • Jeffrey L. Dupree
  • Thomas A. Wynn
  • Jeffrey K. Huang
چکیده

SEE PLUCHINO AND PERUZZOTTI-JAMETTI DOI101093/AWW266 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Myelin regeneration (remyelination) is a spontaneous process that occurs following central nervous system demyelination. However, for reasons that remain poorly understood, remyelination fails in the progressive phase of multiple sclerosis. Emerging evidence indicates that alternatively activated macrophages in central nervous system lesions are required for oligodendrocyte progenitor differentiation into remyelinating oligodendrocytes. Here, we show that an alternatively activated macrophage secreted enzyme, interleukin-four induced one (IL4I1), is upregulated at the onset of inflammation resolution and remyelination in mouse central nervous system lesions after lysolecithin-induced focal demyelination. Focal demyelination in mice lacking IL4I1 or interleukin 4 receptor alpha (IL4Rα) results in increased proinflammatory macrophage density, remyelination impairment, and axonal injury in central nervous system lesions. Conversely, recombinant IL4I1 administration into central nervous system lesions reduces proinflammatory macrophage density, enhances remyelination, and rescues remyelination impairment in IL4Rα deficient mice. We find that IL4I1 does not directly affect oligodendrocyte differentiation, but modulates inflammation by reducing interferon gamma and IL17 expression in lesioned central nervous system tissues, and in activated T cells from splenocyte cultures. Remarkably, intravenous injection of IL4I1 into mice with experimental autoimmune encephalomyelitis at disease onset significantly reversed disease severity, resulting in recovery from hindlimb paralysis. Analysis of post-mortem tissues reveals reduced axonal dystrophy in spinal cord, and decreased CD4+ T cell populations in spinal cord and spleen tissues. These results indicate that IL4I1 modulates inflammation by regulating T cell expansion, thereby permitting the formation of a favourable environment in the central nervous system tissue for remyelination. Therefore, IL4I1 is a potentially novel therapeutic for promoting central nervous system repair in multiple sclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interleukin-4 induced 1 (IL4I1) promotes central nervous system remyelination.

Multiple sclerosis is an inflammatory demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin sheaths and axons (Lorscheider et al., 2016). Most patients initially develop relapsing-remitting disease (RRMS), in which acute neurological deficits are interspersed with periods of partial or complete recovery. However, up to 65% of patients wi...

متن کامل

Myelin Recovery in Multiple Sclerosis: The Challenge of Remyelination

Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prev...

متن کامل

Myelin Protection by Ursolic Acid in Cuprizone-Induced Demyelination in Mice

Neuronal survival in multiple sclerosis (MS) and other demyelinating diseases depends on the preservation of myelin and remyelination of axons. Myelin protection is the main purpose to decrease myelin damage in the central nervous system (CNS). Ursolic acid (UA) as a natural product in apple is suggested to protect neural cells. This study is the first to demonstrate an effect for UA on CNS mye...

متن کامل

Myelin Protection by Ursolic Acid in Cuprizone-Induced Demyelination in Mice

Neuronal survival in multiple sclerosis (MS) and other demyelinating diseases depends on the preservation of myelin and remyelination of axons. Myelin protection is the main purpose to decrease myelin damage in the central nervous system (CNS). Ursolic acid (UA) as a natural product in apple is suggested to protect neural cells. This study is the first to demonstrate an effect for UA on CNS mye...

متن کامل

P 45: De- and Remyelination Affect Cognitive and Locomotor Abilities in Mice

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammatory and neurodegenerative processes. One of its pathophysiological hallmarks is demyelination, a consequence of oligodendroglial cell death leading supply shortfall and missing electrical insulation to axons. Demyelination induced consequences on neuronal network activity and subsequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 139  شماره 

صفحات  -

تاریخ انتشار 2016